Limits and benefits of hearing preservation

R. Laszig, S. Arndt, R. Beck, F. Hassepaß, A. Aschendorff

Dept. of Otorhinolaryngology
Implant Center Freiburg
University of Freiburg, Germany
Quality of CI surgery?

Basically:
• rate of complications
• ability to perform insertions into cochlea

Refined:
• with regard to insertion?
 • Rate of scala tympani insertions
• with regard to electrode?
 • Rate of dislocations of any electrode type
 • Typical trauma pattern?
• with regard to the surgeon?
 • Rate of scala tympani insertions, or dislocations
• with regard to outcome?
 • Rehabilitation results in a specific population
 • Preservation of residual hearing
Comparison of histology and DVT in TB
(Aschendorff et al. 2007 ff, Hassepass et al. 2014)

Example: Contour electrode

Example: MidScala electrode
Comparison of histology and DVT in TB

Example: MedEl electrodes

Standard
Dislocation to SV in 2nd turn

FlexSoft
Dislocation to SV in 2nd turn

Flex EAS
ST insertion
Ongoing Quality Study Freiburg

• initially: RT/Cone-Beam-CT in TB studies
• postop. routine in all adult CI patients
• today: all electrode types, all manufacturers
• insertion via cochleostomy approach or round window
Scala tympani rates of 3 experienced surgeons following cochleostomy
+/- dislocation, individual differences, significant learning curves, n=147
(Aschendorff et al. 2011)
Electrode position II, Scala vestibuli rates

Aschendorff et al. 2011: individual learning curves! + improvement over time, x=trainer effect (1 trained 2, 4, 7 and 8)
Correlation with rehabilitation results?
Freiburg monosyllables (70dB) (OlSa: positive trend for ST, ceiling effect)

At 12 months:
- N = 184
- N = 28
- N = 50
- N = 4

At 24 months:
- N = 116
- N = 23
- N = 37
- N = 2

% correct

Electrode position

- T
- V
- T +
- V +

Significant advantage of scala tympani insertions
- Conservation of basal turn most important
Hearing loss: MedEL Flex 28
N=39, 14 cochleostomy, 25 round window, no sig. difference in preop-thresholds

- Probability of hearing conservation ~65%
- No sig. difference in regards to insertion approach
Hearing loss: AB Midscala

N=20, 9 cochleostomy, 11 round window, no sig. difference in preop-thresholds

- Probability of hearing conservation ~75%
- No sig. difference in regards to insertion approach
Hearing loss: Cochlear Contour Advance

N=25, 25 cochleostomy, no round window

- Probability of hearing conservation ~60%
Hearing loss: Cochlear slim straight (CI422/CI522)

N=60, 24 cochleostomy, 36 round window, no sig. difference in preop-thresholds

- Probability of hearing conservation ~85%
- Rate of preservation increased significantly by round window insertion
Hearing loss: Overall (all arrays)

N=145, 72 cochleostomy, 73 round window, no sig. difference in preop-thresholds

- Probability of hearing conservation ~75%
- Rate of preservation increased significantly by round window insertion
Conclusions: Limits and benefits of hearing preservation

- Preservation of residual hearing is influenced by several factors
 - Electrode design
 - Anatomy
 - Access
 - The human factor → The surgeon
 - Individual vulnerability of the cochlea? Immunological effects?
- All electrodes: 75% preservation of residual hearing, (range 60-85%)
- Best results with thin electrodes, advantage of round window insertion
- Use of residual hearing:
 - Difference in measurable and functional hearing
 - Majority of patients use CI only in the long-term