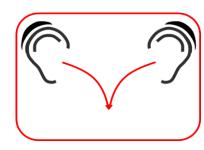
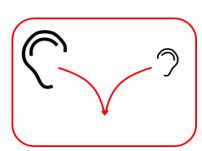


"Evidence based selection of hearing aids and features"

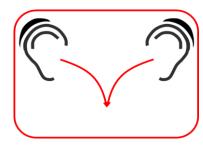

Mark Laureyns

Thomas More University College – Department of Audiology – Antwerp CRS - Amplifon Centre for Research & Studies – Milan – Italy European Association of Hearing Aid Professionals – Brussels - Belgium



Symmetric Hearing Loss

- Good Localisation (Central Auditory Processing)
- Poor Localisation (Central Auditory Processing)

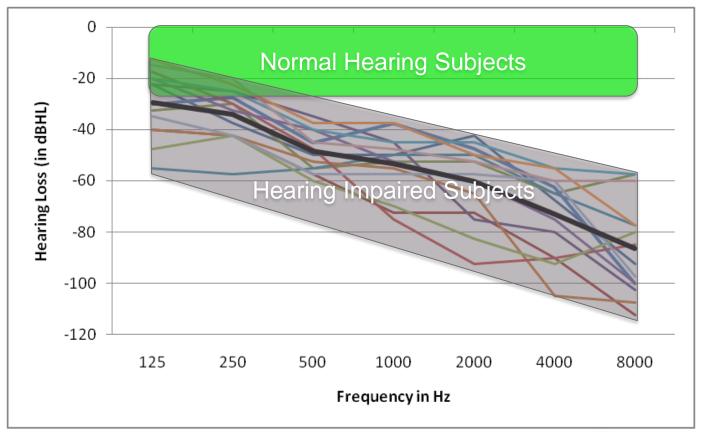

Asymmetric Hearing Loss

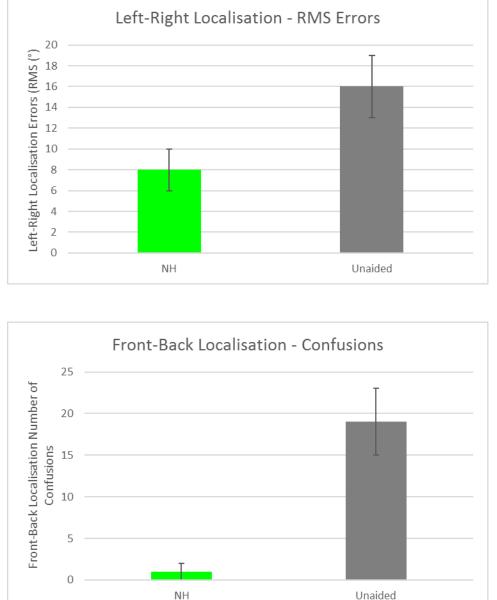
- One Normal Ear One Aidable Ear (Mono-Stereophony)
- Asymmetric Aidable Hearing Loss in both ears
- Single Sided Deafness One Un-Aidable Ear

Symmetric Hearing Loss

- Good Localisation (Central Auditory Processing)
- Poor Localisation (Central Auditory Processing)

- Asymmetric Hearing Loss
 - One Normal Ear One Aidable Ear (Mono-Stereophony)
 - Asymmetric Aidable Hearing Loss in both ears
 - Single Sided Deafness One Un-Aidable Ear



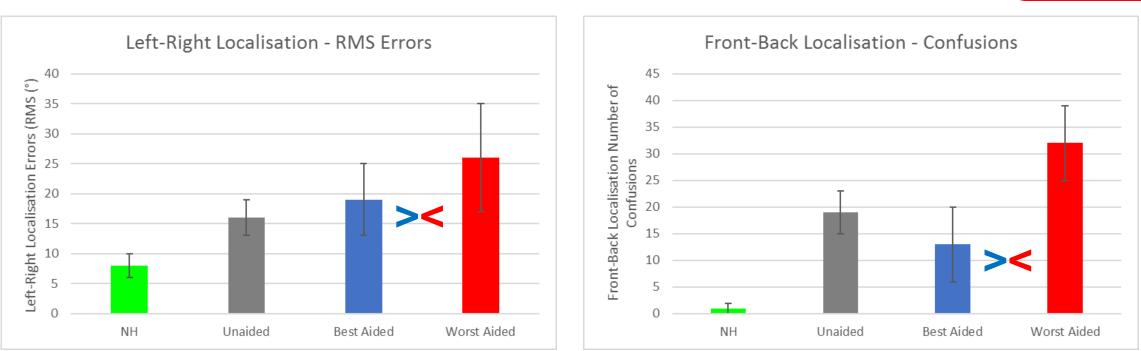


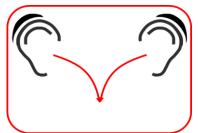
Left-Right and Front-Back Spatial Hearing with Multiple Directional Microphone Configurations in Modern Hearing Aids – Carette et al. 2014

Can symmetric hearing loss lead to localisation problems?

NH

THOMAS

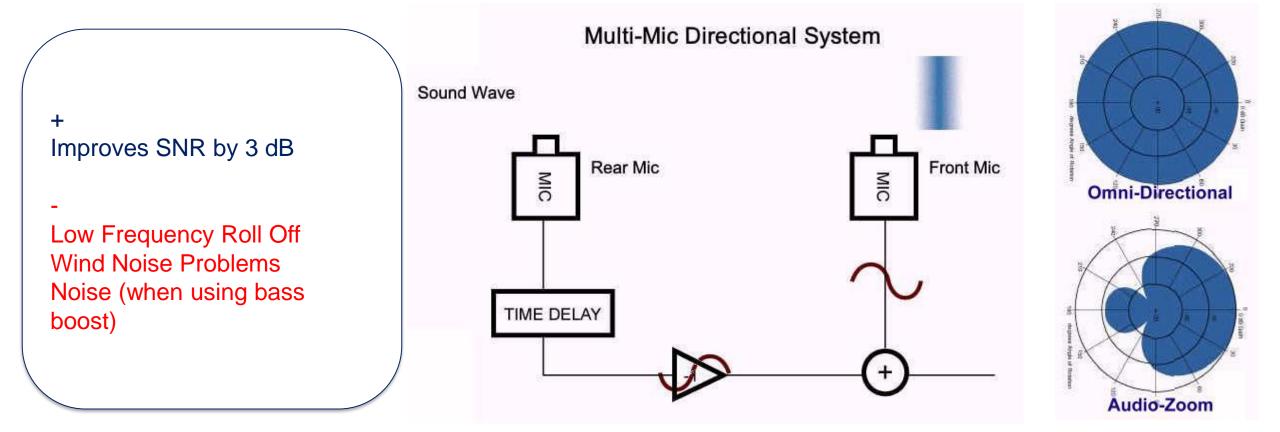

Symmetric Hearing Loss can result in Poorer Localisation



Left-Right and Front-Back Spatial Hearing with Multiple Directional Microphone Configurations in Modern Hearing Aids – Carette et al. 2014

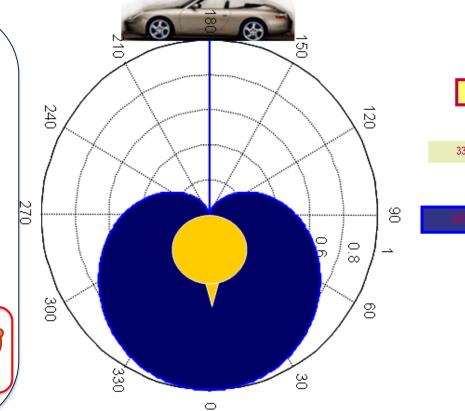
Do Hearing Aids impact localisation

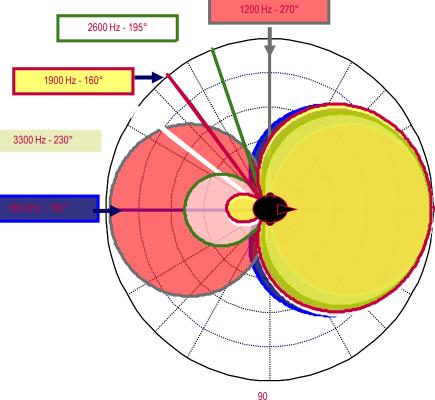
in symmetric hearing loss?



Directional Systems can result in Good or Poor Localisation

Traditional Fixed Directionality

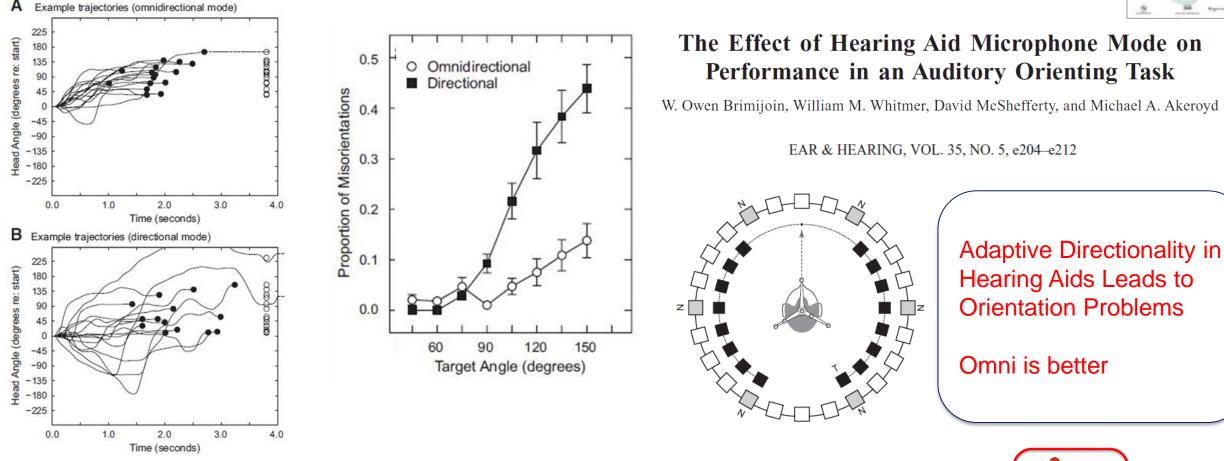

Adaptive Directionality


Car

Impressive effect at first experience (realistic 3 dB SNR Improvement)

Low Frequency Roll Off Wind Noise Problems Noise (when using bass boost) Left-Right Localisation Problems Aggressive Processing

MORE



Broadband Telephone ringing signal in noise

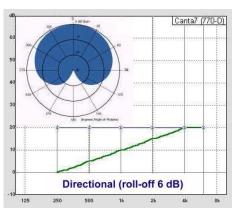
Horizontal localization with bilateral hearing aids

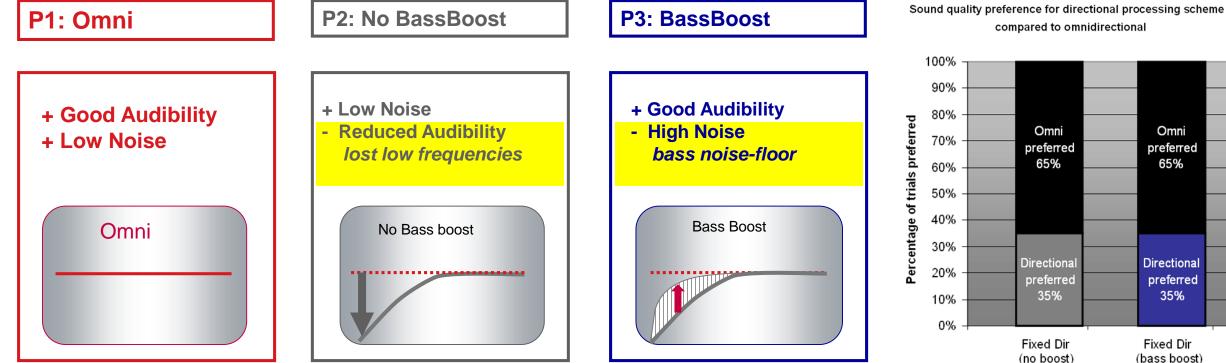
Tim Van den Bogaert^{a)} Horizontal localization with bilateral hearing aids: Lab exp. ORL, K. U. Leuven, Kapucijnenvoer 33, B-3000 Leuven, Belgium THE JOURNAL OF THE ACOUSTICAL SOCIETY Thomas J. Klasen OF AMERICA Without is better than with ESAT-SCD, K. U. Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium Marc Moonen ESAT-SCD, K. U. Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium Lieselot Van Deun J. Acoust. Soc. Am. 119 (1), January 2006 Lab exp. ORL, K. U. Leuven, Kapucijnenvoer 33, B-3000 Leuven, Belgium Jan Wouters Lab exp. ORL, K. U. Leuven, Kapucijnenvoer 33, B-3000 Leuven, Belgium Normal hearing Hearing impaired Hearing impaired Hearing impaired adaptive directional without hearing aids omnidirectional Response position (°) Adaptive Directionality in 90 60 Hearing Aids Leads to 30 Localisation Problems 0 -30 Omni is better -60 Unaided is better -90 -90-60-30 0 30 60 90 -90-60-30 -90-60-30 0 30 60 90 -90-60-30 0 30 60 90 0 30 60 90 Stimulus position (°) THOMAS Adaptive Directionality results in Localisation Problems

Directional Microphone Configurations and Orientation

MORE

Adaptive Directionality results in Orientation Problems


In a double blind study, forced-choice design, 23 participants (hearing aid users) were asked to choose the program they judged as having the best sound quality (for Music-Speech-Environmental sounds). Groth, Laureyns, 2010

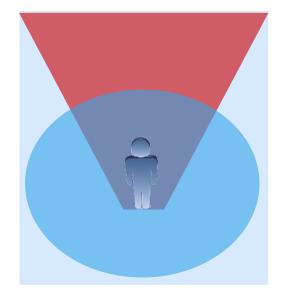

Traditional Fixed and Adaptive Directionality

The Roll-Off consequences

THOMAS

MJR-

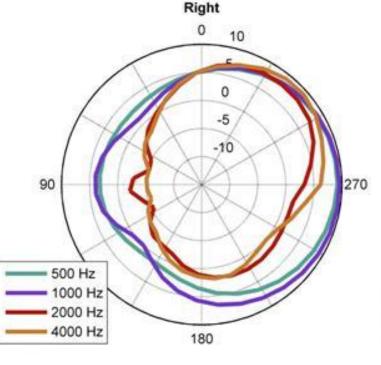
Traditional Directionality results in Poor Sound Quality

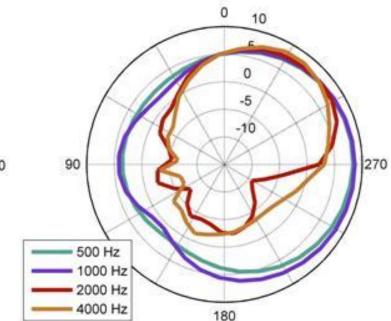

Asymmetric Directionality

Better Sound Quality Keep low frequencies at omni side No need to switch 3dB SNR Improvement

Left-Right Localisation Problems

+




Pinna Directionality

Better Sound Quality Very natural experience Keep low frequencies No need to switch Good localisation both Left-Right and Front-Back 3 dB SNR Improvement

Less impressive at first demo

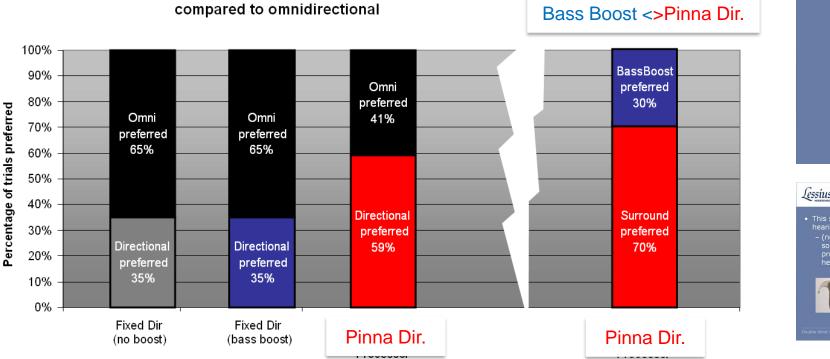
Right

Open human ear

Pinna Directionality

3

MORE



In a double blind study, forced-choice design, 23 participants (hearing aid users) were asked to choose the program they judged as having the best sound quality (for Music-Speech-Environmental sounds). Groth, Laureyns, 2010

Sound Quality – Double Blind Study

Sound quality preference for directional processing scheme

Lessius

Double blind sound quality study (comparison of directionality modes)

23 HI Users

Leen Heymans*, Leen Van der Vliet*, Nele Van De Winkel*, Laure Huyghe**, Leen Crets**, Paul Van Doren**, Mark Laureyns*/** * = Lessius University College - Audiology Department - Antwerp Belgium **= Dialogue Hearing Centers Belgium

Lessius	Goal of t	the study Lessius	Sound files used for the study
 This study has the aim to evaluate sound quality of hearing aids with a double blind protocol (nor the subjects or the researchers evaluating sound quality are informed on the signal 			Celine Dion – All by myself Celine Dion – Because you loved me Andrea Bocelli – Ultimo re
	e in the hearing aids and e an identical design)	all Running S	peech: Dutch speech sample French speech sample English speech sample
1 1		Environme	ntal Sounds; Rain Footsteps in water
Double blind sound quality study - 20	J9		Wind chimes

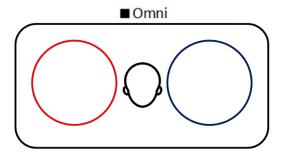
Pinna Directionality results in the best sound quality

Directional Microphone Configurations & Localisation

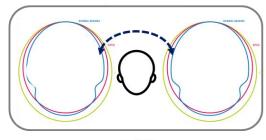
Left-Right and Front-Back Spatial Hearing with Multiple Directional Microphone Configurations in Modern Hearing Aids J Am Acad Audiol 25:791–803 (2014)

Evelyne Carette*† Tim Van den Bogaert* Mark Laureyns‡ Jan Wouters*

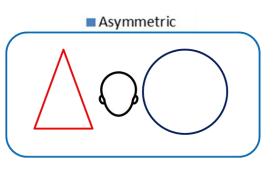
Unaided

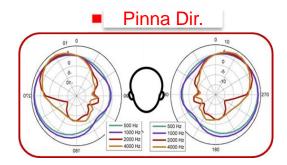

Asymmetric

Omni


Pinna Dir.

Ear2EarFF




■Ear2EarFF

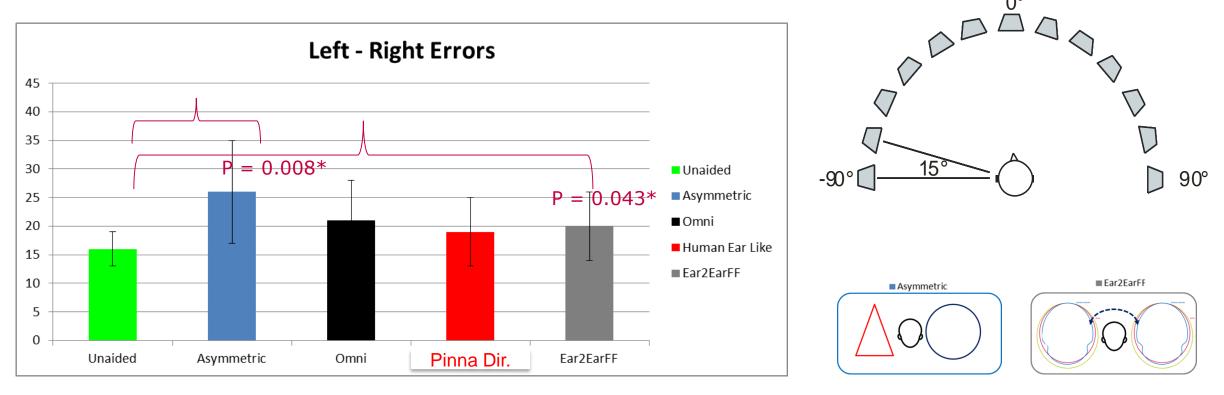
IFOS WORLD COURSE ON HEARING REHABILITATION

Directional Microphone Configurations & Localisation

Left-Right and Front-Back Spatial Hearing with Multiple Directional Microphone Configurations in Modern Hearing Aids

J Am Acad Audiol 25:791-803 (2014)

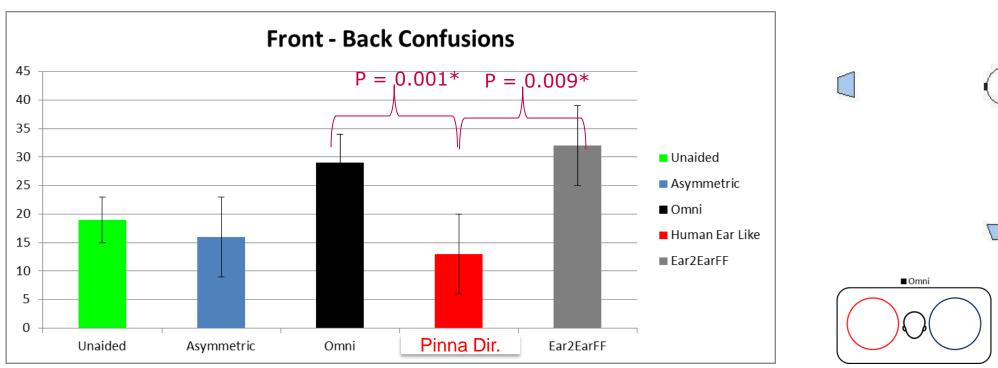
Evelyne Carette*† Tim Van den Bogaert* Mark Laureyns‡ Jan Wouters*

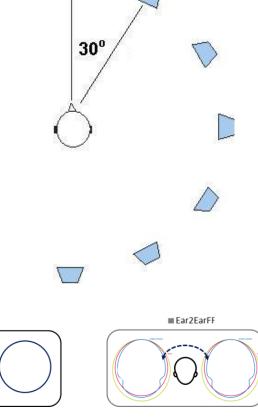


Directional Microphone Configurations & Left-Right Localisation

Left-Right and Front-Back Spatial Hearing with Multiple Directional Microphone Configurations in Modern Hearing Aids

Pinna Directionality and Omni result in the best left/right localisation


C

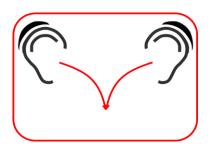

S

Directional Microphone Configurations & Front-Back Localisation

Left-Right and Front-Back Spatial Hearing with Multiple Directional Microphone Configurations in Modern Hearing Aids

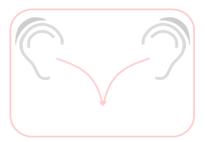
THOMAS

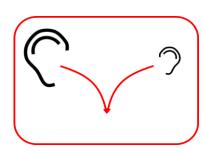
Pinna Directionality results in the best front/back localisation


C

S

- Symmetric Hearing Loss
- Evaluate Localisation Performance Test or Questionnaire (SSQ)
 - Good Localisation (Central Auditory Processing)
 - Select directionality that preserves localisation ques (Pinna Directionality is now available in all major hearing aid brands – but is rarely default)
 - Ensure good balance between both ears
 - Evaluated aided localisation performance (and compare to unaided)
 - Poor Localisation (Central Auditory Processing)
 - Evaluate if poor localisation could be caused by earlier hearing aid selection or fitting.
 - Here you can use more aggressive directionality
 - Consider accessories remote microphone FM systems (up to 20 dB SNR Improvement)

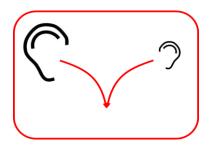




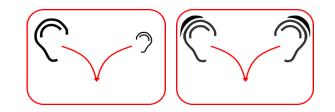
- Symmetric Hearing Loss
 - Good Localisation (Central Auditory Processing)
 - Poor Localisation (Central Auditory Processing)

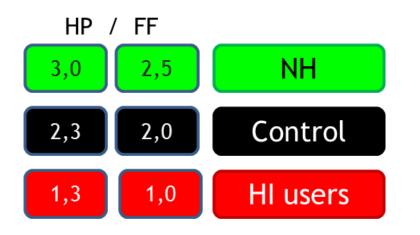
Asymmetric Hearing Loss

- One Normal Ear One Aidable Ear (Mono-Stereophony)
- Asymmetric Aidable Hearing Loss in both ears
- Single Sided Deafness One Un-Aidable Ear



- Asymmetric Hearing Loss
 - One Normal Ear One Aidable Ear (Mono-Stereophony)
 - The goal is to restore natural binaural hearing & localisation
 - Ensure good aided balance between both ears don't use the fitting formula but use localisation or balance test
 - Select directionality that is comparable to the real ear performance (Pinna Directionality is now available in all major hearing aid brands – but is rarely default)
 - Use little or no noise reduction ... this leads to unbalance between the ears
 - Evaluated aided localisation performance (and compare to unaided)

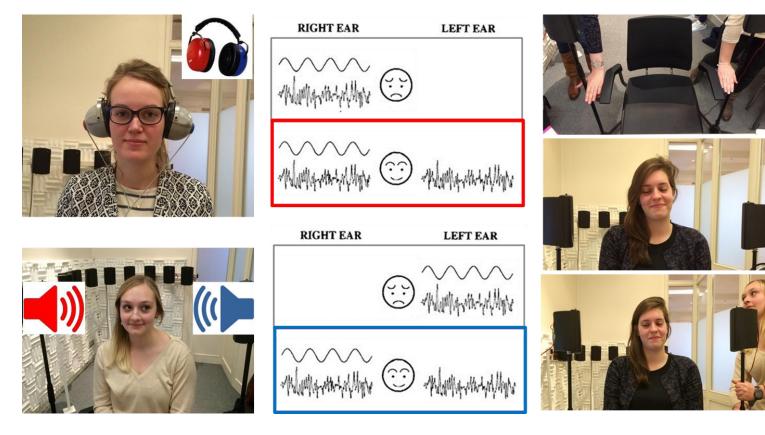




• Asymmetric Hearing Loss – restore binaural masking release

IFOS WORLD COURSE ON HEARING REHABILITATION

Laureyns et al, 2017

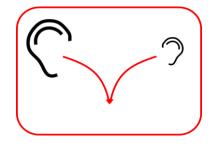

30 Young Normal Hearing Subjects

Avg Age 22y - 70% female

20 Control Subjects (Gender/Age)

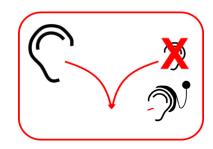
Avg Age 73y - 67% female
20 Hearing Instrument Users

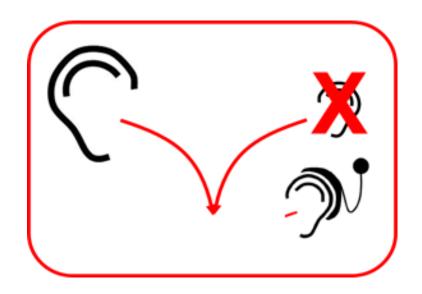
Avg Age 73y - 67% female


Asymmetric Hearing Loss

THOMAS

- Asymmetric Aidable Hearing Loss in both ears
 - The goal is to restore natural binaural hearing & localisation
 - Ensure good aided balance between both ears only use the fitting formula at the start for the worst ear use localisation or balance test to fine-tune.
 - When the worst ear was not aided for a long time, allow time for habituation and repeat balance test systematically.
 - If speech intelligibility on the worst ear is poor, you may fit this ear as a noise reference ear (to support binaural masking release)





- Asymmetric Hearing Loss
 - Single Sided Deafness One Un-Aidable Ear

- CROS Transcranial Cros Hearing Aids Bone Anchored
- CI Cochlear Implant on the unaidable ear

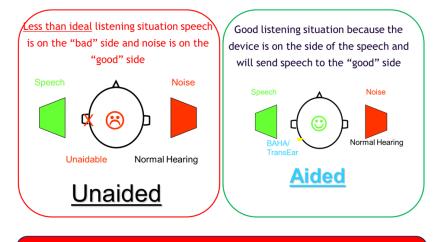
Single Sided Deafness and CROS

Hearing Instruments for Unilateral Severe-to-Profound Sensorineural Hearing Loss in Adults: A Systematic Review and Meta-Analysis

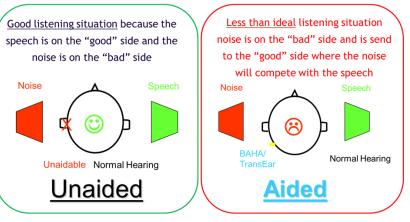
Pádraig Thomas Kitterick,^{1,2} Sandra Nelson Smith,^{1,2} and Laura Lucas^{1,2}

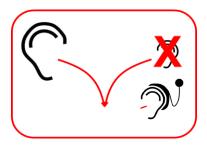
EAR & HEARING, VOL. 37, NO. 5, 495-507 (2016)

Conclusions:


Devices that reroute sounds from an ear with a severe to profound hearing loss to an ear with minimal hearing loss <u>may improve</u> <u>speech perception in noise when signals of interest are located</u> <u>toward the impaired ear</u>.

However, the same device may also <u>degrade speech perception as</u> <u>all signals are rerouted indiscriminately, including noise</u>.


MORE


CROS works if the noise is on the hearing side

CROS does not work if the noise is on the "deaf" side

Single Sided Deafness and Cochlear Implants

Cochlear Implants International An Interdisciplinary Journal

ISSN: 1467-0100 (Print) 1754-7628 (Online) Journal homepage: http://www.tandfonline.com/loi/ycii20

Predicting speech perception outcomes following cochlear implantation in adults with unilateral deafness or highly asymmetric hearing loss

Pádraig T. Kitterick & Laura Lucas

Patients with a shorter duration of deafness were more likely to improve in listening conditions that created a less favourable SNR at the implanted ear than the non-implanted ear. Those with more residual hearing in the better ear were more likely to improve in the listening condition that created a less favourable SNR at that ear.

Otology & Neurotology 37:e154-e160 © 2016, Otology & Neurotology, Inc.

Single-sided Deafness Cochlear Implantation: Candidacy, Evaluation, and Outcomes in Children and Adults

David R. Friedmann, Omar H. Ahmed, Sean O. McMenomey, William H. Shapiro, Susan B. Waltzman, and J. Thomas Roland Jr.

Conclusions: The data reveal significant improvement in speech perception performance in quiet and in noise in patients with single-sided deafness after implantation.

MORC

Single Sided Deafness and Cochlear Implants

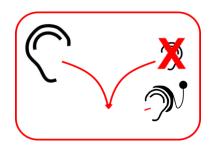
Although cochlear implant is not a Food and Drug Administration-approved treatment for SSD, several recent studies show improvements in speech understanding, sound localization, and tinnitus.

REVIEW

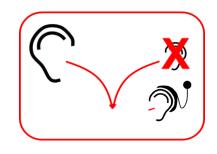
Cochlear implantation and single-sided deafness

Current Opinion in

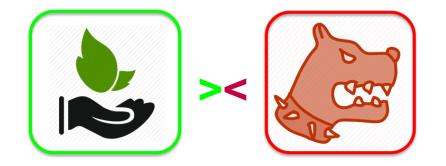
Otolaryngology & Head and Neck Surgery


Joshua Tokita^a, Camille Dunn^a, and Marlan R. Hansen^{a,b}

Tokita et al. Curr Opin Otolaryngol Head Neck Surg 2014, 22:353–358



- Asymmetric Hearing Loss
 - Single Sided Deafness One Un-Aidable Ear
 - <u>CROS Transcranial Cros Hearing Aids Bone Anchored</u>
 - The goal is to reduce the head shadow effect
 - CROS improves the situation if speech is on the "deaf" side and noise on the "good" side.
 - CROS makes things worse, if speech is on the "good" side and noise on the "deaf" side.
 - Classification or Noise Reduction may reduce the negative effects
 - YOU CAN NOT IMPROVE LOCALISATION!
 - <u>CI Cochlear Implant on the unaidable ear</u>
 - This can improve localisation (next to communication and tinnitus)
 - But mostly not seen as a cost-effective intervention (for now ...)



Conclusion

Natural >< Aggressive

MORE

- In binaural fitting localisation is essential
 - Evaluate Localisation both unaided and aided
 - When localisation is possible, select natural features that preserve localisation cues.
 - Watch out for aggressive signal processing
 - Pinna Directionality preserves localisation cues and sound quality.

For mono-stereophony

- Avoid Noise Reduction
- Only Human Ear Like Directionality
- Fitting needs to be based on balance not on the default gain formula
- Don't go for quick fit ... or default ... go for personalised quality hearing care.

IFOS WORLD COURSE ON HEARING REHABILITATION

"Evidence based selection of hearing aids and features"

Mark Laureyns

Thomas More University College – Department of Audiology Antwerp - Belgium

CRS - Amplifon Centre for Research & Studies Milan – Italy

European Association of Hearing Aid Professionals Brussels - Belgium

