The future of inner ear drug delivery

C. Vincent, J. Siepmann
Otology and Neurotology Department,
University Hospital of Lille
Inserm U1008: Controlled Drug Delivery Systems and Biomaterials
Why Controlled Drug Delivery?

Drug concentration at the site of action

- **Uncontrolled release**
- **Controlled release**

Therapeutic window

- **Minimal toxic concentration**
- **Minimal effective concentration**

Efficacy & Safety
Drug delivery to the inner ear

General administration

Intra-cochlear administration
Blood-Cochlear barrier

1- Middle ear administration and cochlear diffusion via the round window

2- Cochlear injection

3- Cochlear administration with controlled diffusion: drug eluting devices
Intracochlear devices

Extracochlear devices
Ear Cubes for local controlled drug delivery to the inner ear

M. Gehrkea,b, J. Sircogloua,b,c, D. Gnansiad, G. Tourreld, J.-F. Willarta,e, F. Danedea,e, E. Lacantea,b, C. Vincenta,b,c, F. Siepmanna,b, J. Siepmanna,b,*
Results: DXM Release

Silicone-based implants

Drug release was prolonged and continuous during the observation period (90 days for implants).

\[\frac{M_\infty - M_t}{M_\infty} = 1 - \frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} \exp \left(-\frac{D(2n+1)^2 \pi^2 t}{L^2} \right) \]
Materials and methods: Implantation

12 Mongolian gerbils implanted bilaterally

Risoud et al, Hear res, 2016
Materials and Methods

• Cochlea preparation: dissection, fixation (and decalcification for the whole cochlea)

organ of Corti

whole transparent cochlea
Controls

Positive: DXM intratympanic injection

Negative: saline & unloaded ear cube
Results: Confocal Microscopy with DXM cube

Detection of specific anti-DXM fluorescence (green labeling) in the hair cells

![Image of Confocal Microscopy with DXM cube]

- DAPI
- DXM
- Phalloidin
- Anti-DXM labeling
- 3 labeling
Results: Specific labeling

Location of anti-DXM labeling in inner hair cells and outer hair cells of organ of corti

Phalloidin, DAPI, DAPI, anti-DXM labeling, Phalloidin, DAPI, anti-DXM labeling
Results: Staining intensity

Detection of anti-DXM labeling inside hair cells 20 min post-implantation and even at day 30. Climax for the cochlea collected at day 7 post-implantation.
Conclusion

- A new device for local drug delivery into the inner ear using a non-degradable polymeric silicone matrix placed at the level of the oval window.

- Continuous and prolonged release from DXM-loaded implants for 90 days adapted for chronic ear disease treatment.

- Carrier for other drugs or therapies (e.g. gentamycin, diuretics...).

Intracochlear devices

Extracochlear devices
Modified electrode: Drug is added to the silicone matrix

Intra-cochlear implants
Drug release mechanisms

Silicone implants loaded with dexamethasone
Physical state of the drug: SEM of cross sections

- Surface of a polymeric film loaded with 10% DXM.
- Cross section of an extrudate loaded with 1% DXM.
- Cross section of a polymeric film loaded with 10% DXM.
- Cross section of an extrudate loaded with 10% DXM.
Implantation of DXM+ and DXM - electrodes

- Pre-op hearing testing

- Implantation of 20 gerbils:
 - one ear with a DXM+ electrode (1 & 10 %),
 - the other with a DXM- electrode

- Post-op hearing testing @ 1 month and 1 year
In vivo study

• Active dexamethasone electrode array with controlled release allows a better conservation of hearing thresholds at 1 month for 500, 1000, 2000, 4000 and 16000 Hz and at 1 year for 16000 Hz in our gerbil model.

Krenzlin et al, J Control Release (2012)
Douchement et al, Cochlear Implants Int (2014)
Cochlear implants: long term safety?
Confocal microscopy on whole transparent cochlea
Cell population

![Bar graph showing the population of hair cells in different conditions.](image)

- **DXM 1% electrode array**: 83.5 (56-120) hair cells/25000 μm²
- **DXM - electrode array**: 64.2 (52-82) hair cells/25000 μm²
- **Control**: 74.6 (68-88) hair cells/25000 μm²

Legend:
- **Inner ear hair cells**
- **Outer ear hair cells**
The drug loading was 10 and 30% dexamethasone.

DXM + electrode & chronic implantation

• Change in the electrode/tissue interface
• Lower impedances than compared to the DXM – side
• Imaging of transparent whole cochleas
 – confocal microscopy
 – lightsheet microscopy
• Study large surfaces and volumes
 – fibrosis: lower impedance=less fibrosis (to be confirmed!)
 – other intracochlear phenomenons (apoptosis…)
• Difficult to obtain statistical significance (more animals)
Preservation of cochlea after cochlear implantation

• Preservation of structure
 – less invasive electrode
 – better preoperative analysis of the cochlea
 – better control of insertion, better quality control

• Preservation of function
 – drug eluting electrodes
 – DXM is a starting point ("cochlear cocktail"?)
 – Controlled drug delivery is mandatory
Inserm U1008: Controlled Drug Delivery Systems and Biomaterials: J. Siepmann, C. Vincent

PE Lemesre, M. Risoud
D. Douchement, NX Bonne
G. Dedieu, M Tardivel
J. Lamblin, J. Sircoglou,
A. Terranti, M. Gerkhe
S. Krenzlin, NX Bonne
F. Siepmann, M. Ting

The authors are very grateful to the ANR (The French National Research Agency) for their financial support (N° ANR-15-CE19-0014-01) and Oticon medical