Audiological Diagnosis after Newborn Screening

Prof. Hung THAI-VAN
Department of Audiology & Otoneurological Evaluation, Lyon University Hospital
President of the French Society of Audiology
International Bureau of Audiophonology board
Paris Hearing Institute, Inserm UMR1120

Ifos World Course on Hearing Rehabilitation
Ho Chi Minh city, 24 November 2019
Universal Newborn Hearing Screening (UNHS): What’s next?

0 – 1 month

UNHS

3 months

Diagnosis

6 months

Intervention
Behavioral Audiometry: when and how

Objective measures: what is children-specific?

Diagnostic strategy
Principles of Behavioral Audiometry

- Building a circular path between the clinician and the child

 Deliver stimuli
 *
 Take reactions

 Take stimuli
 *
 Deliver reactions

- Adapt your testing to the child age (neurodevelopmental, not chronological)

- Always use the parents as partners when testing
Before 6 months: Behavioral Observation Audiometry (BOA)

➢ Take your time and look for the infant reflexive behaviors to auditory stimuli: i.e., eye blink/widening, modification of cardiac rhythm, startle responses (Moro reflex)…

➢ **Bias 1**: can be elicited by a wide range of intensity levels

➢ **Bias 2**: babies can get bored very quickly

➢ **Bias 3**: observer experience-dependent
Behavioral Audiometry: when and how

Objective measures: what is child specific?

Diagnostic strategy
TARGETTING...

- Middle Ear
- Inner Ear
- Afferent pathway & beyond
Tympanometry

(Otto Metz, 1946; Jerger, 1970)

Impedance: type B

\[P = 0 \text{ atm} \]

Adapted from Van Den Abbeelee et al.
Effect of ear canal volume

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Equivalent ear canal volume (V_{ec})</th>
<th>Static compensated admittance (Y_{tm})</th>
<th>Tympanometric width (TW)</th>
<th>Tympanometric peak pressure (TPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborns and Infants < 6 months (1000 Hz probe)</td>
<td>0.2 – 0.8 cc</td>
<td>$\geq 0.6 \text{ mmho for negative compensation}$</td>
<td>$<150 \text{ daPa}$</td>
<td>NA</td>
</tr>
<tr>
<td>6-18 months - (226 Hz probe)</td>
<td>0.5 – 1.0 cc</td>
<td>$\geq 0.2 \text{ mmho}$</td>
<td>$<250 \text{ daPa}$</td>
<td>$+25 \text{ to } -75 \text{ daPa}$</td>
</tr>
<tr>
<td>>18 months to 10 years (226 Hz probe)</td>
<td>0.6 – 1.2 cc</td>
<td>$\geq 0.3 \text{ mmho}$</td>
<td>$<200 \text{ daPa}$</td>
<td>$+25 \text{ to } -75 \text{ daPa}$</td>
</tr>
<tr>
<td>>10 years and Adults (226 Hz probe)</td>
<td>1.0 – 2.2 cc (males)</td>
<td>$\geq 0.3 \text{ mmho}$</td>
<td>$<125 \text{ daPa}$</td>
<td>$+5 \text{ to } -105 \text{ daPa}$</td>
</tr>
<tr>
<td></td>
<td>0.8-1.9 cc (females)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consensus statement: Eriksholm workshop on wideband absorbance measures of the middle ear. Feeney MP et al., Ear Hear. 2013
3D wideband tympanometry
TARGETTING...

- Middle Ear
- Inner Ear
- Afferent pathway & beyond
Transient evoked otoacoustic emissions
Transient evoked otoacoustic emissions

Assessing OHCs in vivo

Otoacoustic emissions
Distorsion Product Otoacoustic emissions

Objective Audiometry: DPOAEs are back!
Distorsion Products
Distorsion Products
Distorsion Products

![Graph showing DPOAE amplitude vs. f2 (Hz).]

- DPOAE (2f1-f2)
- Noise floor

![Diagram of the cochlea showing high and low frequency regions.]

- Haute fréquence
- Basse fréquence
TARGETTING…

- Middle Ear
- Inner Ear
- Afferent pathway & beyond
Click, Chirp, Tone Burst

AUDITORY BRAINSTEM RESPONSES

fs = 7 à 50 kHz
3000 trials
> 80 Hz

Why « brainstem »?
Early activity (< 20 ms) > 80 Hz
Auditory Evoked Potentials (AEP)

I) CLICK ABRs
II) FREQUENCY-SPECIFIC DIAGNOSIS
III) HOW TO GET RID OF CONDUCTIVE HL
ABR RECIPE
IN YOUNG CHILDREN
Looking for objective hearing threshold

Start at 70 dB then diminish stim level (10-20 dB steps)

Normal ABRs (20 dB-threshold)
ABR information

What does it tell you?

✓ Well-defined waveforms
✓ CNS maturity
✓ Topodiagnosis in conjunction with TEOAEs
✓ Auditory neuropathy diagnosis
Auditory Neuropathy Diagnosis

➢ TOAEs are present

➢ ABRs are absent

➢ Cochlear microphonic potential (CMP) must be looked for
Cochlear Microphonic Potential (CMP)

- Low amplitude response just a few msec after the click
- Latency does not change with intensity level
- Receptor potential of hair cells
- Follow stimulus polarity (either rarefaction or condensation click)

(Starr et al., 1996; Starr et al., 2001; Buchman et al., 2006; Berlin et al., 2010)

From Hood, 2015
Case Report – 2 month-old preterm birth (36 weeks)

OEA present

OEA absent
Case Report – 2 month-old preterm birth (36 weeks)

ABR present
Alternating Polarity click

ABR absent
Alternating Polarity click
Case Report – 2 month-old preterm birth (36 weeks)

CMP present
Rarefaction / Condensation clicks
Auditory Evoked Potentials (AEP)

I) CLICK ABRs
II) FREQUENCY-SPECIFIC DIAGNOSIS
III) HOW TO GET RID OF CONDUCTIVE HL
Original Article

International Journal of Audiology 2007; 00:1–9

Tone-evoked ABR in full-term and preterm neonates with normal hearing
Tone-Burst ABR

Ribeiro, 2003
Tone-Burst ABR

Ribeiro FM, Carvallo, RM; 2007

✓ Global neurodevelopment delay
✓ No collaboration at behavioral audiometry
✓ Need for frequency specific diagnosis
Carrier: e.g. 2000 Hz

Modulation 90 Hz

FM +/- AM signal

Auditory steady state response (ASSR)
Auditory steady state response (ASSR)

- Carrier Frequencies (FP): 500, 1000, 2000, 4000 Hz
- Modulation Frequencies (FM): 90 Hz

To optimize session strategy decisions as test progresses, the response confidence is tracked over time for each test frequency.
Testing 4 frequencies in both ears at a time!
ASSR provide objective audiogram
Click-ABR vs ASSR threshold
Auditory Evoked Potentials (AEP)

I) CLICK ABR
II) FREQUENCY-SPECIFIC DIAGNOSIS
III) HOW TO GET RID OF CONDUCTIVE HL
With permission from Ribeiro & Chapchap, Hospital Sao Luiz - Sao Paulo
Behavioral Audiometry: when and how

Objective measures: what is child specific?

Diagnostic strategy
➢ Combine otoscopic, endocochlear and afferent auditory pathway examination
➢ It’s always nice to see the ABR traces
➢ If you can’t get a precise idea of middle ear status, go for Bone conduction testing
➢ Frequency-specific diagnosis can be done at follow-up
Thank you!