The future of inner ear drug delivery

C. Vincent, J. Siepmann

Otology and Neurotology Department, University Hospital of Lille

Inserm U1008: Controlled Drug Delivery Systems and Biomaterials

Drug delivery to the inner ear

General administration

Intra-cochlear administration

Blood-Cochlear barrier

1- Middle ear administration and cochlear diffusion via the round window

2- Cochlear injection

3- Cochlear administration with controlled diffusion: drug eluting devices

Intracochlear devices

Extracochlear devices

Contents lists available at ScienceDirect

International Journal of Pharmaceutics

journal homepage: www.elsevier.com/locate/ijpharm

Ear Cubes for local controlled drug delivery to the inner ear

PHARMACEUTIC

M. Gehrke^{a,b}, J. Sircoglou^{a,b,c}, D. Gnansia^d, G. Tourrel^d, J.-F. Willart^{a,e}, F. Danede^{a,e}, E. Lacante^{a,b}, C. Vincent^{a,b,c}, F. Siepmann^{a,b}, J. Siepmann^{a,b,*}

Results: DXM Release

Silicone-based implants

Drug release was prolonged and continuous during the observation period (90 days for implants).

Materials and methods: Implantation

12 Mongolian gerbils implanted bilaterally

Risoud et al, Hear res, 2016

Materials and Methods

• Cochlea preparation: dissection, fixation (and decalcification for the whole cochlea)

Controls

Positive: DXM intratympanic injection

Negative: saline & unloaded ear cube

Results: Confocal Microscopy with DXM cube

Detection of specific anti-DXM fluorescence (green labeling) in the hair cells

Anti-DXM labeling

Phalloidin

DAPI

Results: Specific labeling

Location of anti-DXM labeling in inner hair cells and outer hair cells of organ of corti

Phalloidin, DAPI

DAPI, anti-DXM labeling

Phalloidin, DAPI, anti-DXM labeling

Results: Staining intensity

Detection of anti-DXM labeling inside hair cells 20 min post-implantation and even at day 30. Climax for the cochlea collected at day 7 post-implantation.

Anti-DXM labeling

Phalloidin

Conclusion

- A new device for local drug delivery into the inner ear using a nondegradable polymeric silicone matrix placed at the level of the oval window
- Continuous and prolonged release from DXM-loaded implants for 90 days adapted for chronic ear disease treatment
- Carrier for other drugs or therapies (e.g. gentamycin, diuretics...).

Intracochlear devices

Extracochlear devices

Modified electrode: Drug is added to the silicone matrix

Intra-cochlear implants

Physical state of the drug: SEM of cross sections

surface of a polymeric film loaded with 10 % DXM, cross section of an extrudate loaded with 1 % DXM

cross section of a polymeric film loaded with 10 % DXM cross section of an extrudate loaded with 10 % DXM.

Drug release mechanisms

Implantation of DXM+ and DXM - electrodes

• Pre-op hearing testing

- Implantation of 20 gerbils:
 - one ear with a DXM+ electrode (1 & 10 %),
 - the other with a DXM- electrode
- Post-op hearing testing @ 1 month and 1 year

In vivo study

 Active dexamethasone electrode array with controlled release allows a better conservation of hearing thresholds at 1 month for 500, 1000, 2000, 4000 and 16000 Hz and at 1 year for 16000 Hz in our gerbil model.

Krenzlin et al, J Control Release (2012) Douchement et al, Cochlear Implants Int (2014)

Cochlear implants: long term safety ?

Cell population

Cochleas

DXM + electrode & chronic implantation

- Change in the electrode/tissue interface
- Lower impedances than compared to the DXM side
- Imaging of transparent whole cochleas
 - confocal microscopy
 - lightsheet microscopy
- Study large surfaces and volumes
 - fibrosis: lower impedance=less fibrosis (to be confirmed on a long term basis!)
 - other intracochlear phenomenoms (apoptosis...)
- Difficult to obtain statistical significance (more animals)

Preservation of cochlea after cochlear implantation

- Preservation of structure
 - less invasive electrode
 - better preoperative analysis of the cochlea
 - better control of insertion, better quality control
- Preservation of function
 - drug eluting electrodes
 - DXM is a starting point ("cochlear cocktail"?)
 - Controlled drug delivery is mandatory

Inserm U1008: Controlled Drug Delivery Systems and Biomaterials: J. Siepmann, C. Vincent

M. Risoud
NX Bonne
M Tardivel
J. Sircoglou,
M. Gerkhe
NX Bonne
M. Ting

The authors are very grateful to the ANR (The French National Research Agency) for their financial support (N° ANR-15-CE19-0014-01) and Oticon medical